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Determinants and Matrix Inverses

Theorem (Product Theorem)
If A and B are n × n matrices, then

det(AB) = det A det B.

Proof.
If either A or B is singular, then both sides are equal to zero.

Now assume that both A and B are nonsingular, i.e., rank (A) = rank (B) = n. Then
rref(A) = rref(B) = I

and
A = E1E2 · · ·Ep and B = F1F2 · · ·Fq.

where Ei and Fj are elementary matrices. Then by the relation of elementary row
operations with determinants (Theorem 3.1.2), we see that

|AB| = |E1 · · ·EpF1 · · ·Fq|
= |E1| · · · |Ep||F1| · · · |Fq|
= |E1 · · ·Ep||F1 · · ·Fq|
= |A||B|.
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Theorem (Determinant of Matrix Inverse)
An n × n matrix A is invertible if and only if det A 6= 0. In this case,

det(A−1) = (det A)−1 =
1

det A
.

Proof.
”⇒”:

1 = |I| = |AA−1| = |A||A−1| ⇒


|A| 6= 0

|A−1| = 1
|A| .

”⇐”: If |A| 6= 0, then rref(A) = I because otherwise one obtains contradiction by
Theorem 3.1.2. This is another way to say that A is invertible: (recall the matrix inverse
algorithm)

[A|I] →
[

rref(A)︸ ︷︷ ︸
= I

∣∣∣∣A−1

]
.
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Example

Find all values of c for which A =

 c 1 0
0 2 c

−1 c 5

 is invertible.

det A =

∣∣∣∣∣∣
c 1 0
0 2 c

−1 c 5

∣∣∣∣∣∣ = c
∣∣∣∣ 2 c

c 5

∣∣∣∣+ (−1)

∣∣∣∣ 1 0
2 c

∣∣∣∣
= c(10− c2)− c = c(9− c2) = c(3− c)(3 + c).

Therefore, A is invertible for all c 6= 0, 3,−3.



Theorem (Determinant of Matrix Transpose)

If A is an n × n matrix, then det(AT) = det A.

Proof.
1. This is trivially true for all elementary matrices.
2. If A is not invertible, then neither is AT. Hence, det A = 0 = det AT.
3. If A is invertible, then A = EkEk−1 · · ·E2E1. Hence, by Case 1,∣∣∣AT

∣∣∣ = ∣∣∣(EkEk−1 · · ·E2E1)
T
∣∣∣

=
∣∣∣ET

1 ET
2 · · ·ET

k−1E
T
k

∣∣∣
=

∣∣∣ET
1

∣∣∣ ∣∣∣ET
2

∣∣∣ · · · ∣∣∣ET
k−1

∣∣∣ ∣∣∣ET
k

∣∣∣
= |E1| |E2| · · · |Ek−1| |Ek|
= |Ek| |Ek−1| · · · |E2| |E1|
= |EkEk−1 · · ·E2E1|
= |A| .
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Problem
Suppose A is a 3× 3 matrix. Find det A and det B if

det(2A−1) = −4 = det(A3(B−1)T).

Solution
First,

det(2A−1) = −4

23 det(A−1) = −4

1

det A
=

−4

8
= −1

2

Therefore, det A = −2.



Solution (continued)
Now,

det(A3(B−1)T) = −4

(det A)3 det(B−1) = −4

(−2)3 det(B−1) = −4

(−8)det(B−1) = −4

1

det B
=

−4

−8
=

1

2

Therefore, det B = 2. �



Problem
Suppose A, B and C are 4× 4 matrices with

det A = −1, det B = 2, and det C = 1.

Find det(2A2(B−1)(CT)3B(A−1)).

Solution

det(2A2(B−1)(CT)3B(A−1)) = 24(det A)2
1

det B
(det C)3(det B)

1

det A
= 16(det A)(det C)3

= 16× (−1)× 13

= −16.
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Problem

A square matrix A is orthogonal if and only if AT = A−1. What are the
possible values of det A if A is orthogonal?

Solution

Since AT = A−1,

det AT = det(A−1)

det A =
1

det A
(det A)2 = 1

Assuming A is a real matrix, this implies that det A = ±1, i.e., det A = 1 or
det A = −1. �
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Adjugates

For a 2× 2 matrix A =

[
a b
c d

]
, we have already seen the adjugate of A

defined as

adj(A) =

[
d −b
−c a

]
,

and observed that

A adj(A) =

[
a b
c d

] [
d −b
−c a

]
=

[
ad − bc 0

0 ad − bc

]
= (det A)I2

Furthermore, if det A 6= 0, then A is invertible and

A−1 =
1

det A
adj(A).



Definition (Adjugate Matrix)
If A is an n × n matrix, then the adjugate matrix of A is defined to be

adj(A)
def
=

[
cij(A)

]T
=

[
(−1)i+j det(Aij)

]T
,

where cij(A) is the (i, j)-cofactor of A, i.e., adj(A) is the transpose of the
cofactor matrix (matrix of cofactors).



Problem

Find adj(A) when A =

 2 1 3
5 −7 1
3 0 −6

 and compute A adj(A).

Solution

adj(A) =

 42 6 22
33 −21 13
21 3 −19

 .

Notice that

A adj(A) =

 2 1 3
5 −7 1
3 0 −6

 42 6 22
33 −21 13
21 3 −19

 =

 180 0 0
0 180 0
0 0 180



det A =

∣∣∣∣∣∣
2 1 3
5 −7 1
3 0 −6

∣∣∣∣∣∣ =
∣∣∣∣∣∣

2 1 3
19 0 22
3 0 −6

∣∣∣∣∣∣ = (−1)

∣∣∣∣ 19 22
3 −6

∣∣∣∣ = 180,

Therefore,
A adj(A) = (det A)I.
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Theorem (The Adjugate Formula)
If A is an n × n matrix, then

A adj(A) = (det A)I = adj(A)A.

Furthermore, if det A 6= 0, then

A−1 =
1

det A
adj(A).

Proof.
We only prove the case when n = 3.

A adj(A) =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 c11 c21 c31
c12 c22 c32
c13 c23 c33

 =

 |A| 0 0
0 |A| 0
0 0 |A|


where, for example,

(3,2)-th entry = a31c21 + a32c22 + a33c23

= det

a11 a12 a13
a31 a32 a33
a31 a32 a33

 = 0.
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Example

For an n × n matrix A, show that det adj(A) = (det A)n−1.

Using the adjugate formula,

A adj(A) = (det A)I
det(A adj(A)) = det((det A)I)

(det A)× det adj(A) = (det A)n(det I)
(det A)× det adj(A) = (det A)n

If det A 6= 0, then divide both sides of the last equation by det A:

det adj(A) = (det A)n−1.



Example (continued)
For the case det A = 0, we claim that

det A = 0 ⇒ det adj(A) = 0, (?)

which implies that

det adj(A) = 0 = 0n−1 = (det A)n−1.

Proof. (of (?))

We will prove (?) by contradiction. Indeed, if det A = 0, then

A adj(A) = (det A)I = (0)I = O,

i.e., A adj(A) is the zero matrix. If det adj(A) 6= 0, then adj(A) would be
invertible, and A adj(A) = O would imply A = O. However, if A = O, then
adj(A) = O and is not invertible, and thus has determinant equal to zero,
i.e., det adj(A) = 0, (a contradiction!) Therefore, det adj(A) = 0, i.e., (?) is
true. �



Problem

Let A and B be n × n matrices. Show that det(A + BT) = det(AT + B).

Solution
Notice that

(A + BT)T = AT + (BT)T = AT + B.

Since a matrix and it’s transpose have the same determinant

det(A + BT) = det((A + BT)T) = det(AT + B).
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Problem
For each of the following statements, determine if it is true or false, and
supply a proof or a counterexample.

1. If adj(A) exists, then A is invertible.
2. If A and B are n × n matrices, then det(AB) = det(BTA).

Problem
Prove or give a counterexample to the following statement:

If det A = 1, then adj(A) = A.
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Cramer’s Rule

If A is an n × n invertible matrix, then the solution to A~x = ~b can be given
in terms of determinants of matrices.

Theorem (Cramer’s Rule)

Let A be an n × n invertible matrix, the solution to the system A~x = ~b of n
equations in teh variables x1, x2 · · · xn is given by

x1 =
det

(
A1(~b)

)
det A

, x2 =
det

(
A2(~b)

)
det A

, · · · , xn =
det

(
An(~b)

)
det A

where, for each j, the matrix Aj(~b) is obtained from A by replacing column
j with ~b:

Aj(~b) =
[
~a1 · · · ~aj−1

~b ~aj+1 · · · ~an

]



Proof.
I Notice that

Aj(~b) =
[

~a1 · · · ~aj−1
~b ~aj+1 · · · ~an

]
=

[
A~e1 · · · A~ej−1 A~x A~ej+1 · · · A~en

]
= A

[
~e1 · · · ~ej−1 ~x ~ej+1 · · · ~en

]
= A Ij(~x)

where

Ij(~x) =
[
~e1 · · · ~ej−1 ~x ~ej+1 · · · ~en

]

=



1 x1

. . .
...

1 xj−1

xj

xj+1 1
...

. . .
xn 1





Proof. (continued)
I Hence, by taking the determinants on both sides, we have

det(Aj(~b)) = det(A Ij(~x))
= det(A) det(Ij(~x))

I And because det(A) 6= 0, we can then write:

det(Ij(~x)) =
det(Aj(~b))

det(A)

I Finally, notice that det(Ij(~x)) = · · · = xj.
�



Problem
Find x3 such that

3x1 + x2 − x3 = −1
5x1 + 2x2 = 2
x1 + x2 − x3 = 1

Solution

By Cramer’s rule, x3 = det A3
det A , where

A =

 3 1 −1
5 2 0
1 1 −1

 and A3 =

 3 1 −1
5 2 2
1 1 1

 .

Computing the determinants of these two matrices,

det A = −4 and det A3 = −6.

Therefore, x3 = −6
−4

= 3
2
. �



Remark
For practice, you should compute det A1 and det A2, where

A1 =

 −1 1 −1
2 2 0
1 1 −1

 and A2 =

 3 −1 −1
5 2 0
1 1 −1

 ,

and then solve for x1 and x2.

Solution. x1 = −1, x2 = 7/2. �
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Polynomial Interpolation and Vandermonde Determinant

Problem
Given data points (0, 1), (1, 2), (2, 5) and (3, 10), find an interpolating
polynomial p(x) of degree at most three, and then estimate the value of y
corresponding to x = 3/2.

x

y

(0, 1)

(1, 2)

(2, 5)

(3, 10)

1 2 3 4

2

3

4

5

6

7

8

9

10

3
2



Solution
We want to find the coefficients r0, r1, r2 and r3 of

p(x) = r0 + r1x + r2x2 + r3x3

so that p(0) = 1, p(1) = 2, p(2) = 5, and p(3) = 10.

p(0) = r0 = 1

p(1) = r0 + r1 + r2 + r3 = 2

p(2) = r0 + 2r1 + 4r2 + 8r3 = 5

p(3) = r0 + 3r1 + 9r2 + 27r3 = 10



Solution (continued)
Solve this system of four equations in the four variables r0, r1, r2 and r3.

1 0 0 0 1
1 1 1 1 2
1 2 4 8 5
1 3 9 27 10

 → · · · →


1 0 0 0 1
0 1 0 0 0
0 0 1 0 1
0 0 0 1 0


Therefore, r0 = 1, r1 = 0, r2 = 1, r3 = 0, and so

p(x) = 1 + x2.

Finally, the estimate is

y = p
(
3

2

)
= 1 +

(
3

2

)2

=
13

4
.
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x

y

(0, 1)

(1, 2)

(2, 5)

(3, 10)

1 2 3 4

2

3

4

5

6

7

8

9

10

3
2

13
4

1 + x2



Theorem (Polynomial Interpolation)

Given n data points (x1, y1), (x2, y2), . . . , (xn, yn) with the xi distinct, there
is a unique polynomial

p(x) = r0 + r1x + r2x2 + · · ·+ rn−1xn−1

such that p(xi) = yi for i = 1, 2, . . . , n.

The polynomial p(x) is called the interpolating polynomial for the data.



To find p(x) = r0 + r1x + r2x2 + · · ·+ rn−1xn−1, set up a system of n linear
equations in the n variables r0, r1, r2, . . . , rn−1.

r0 + r1x1 + r2x2
1 + · · ·+ rn−1xn−1

1 = y1

r0 + r1x2 + r2x2
2 + · · ·+ rn−1xn−1

2 = y2

r0 + r1x3 + r2x2
3 + · · ·+ rn−1xn−1

3 = y3

...
...

...

r0 + r1xn + r2x2
n + · · ·+ rn−1xn−1

n = yn

The coefficient matrix for this system is


1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 · · · xn−1

2

...
...

...
...

...
1 xn x2

n · · · xn−1
n



I Such matrix is called Vandermonde matrix.
I Its determinant is called Vandermonde determinant.



Theorem (Vandermonde Determinant )
Let a1, a2, . . . , an be real numbers, n ≥ 2. The corresponding Vandermonde
determinant is

det


1 a1 a2

1 · · · an−1
1

1 a2 a2
2 · · · an−1

2

...
...

...
...

...
1 an a2

n · · · an−1
n

 =
∏

1≤j<i≤n

(ai − aj).

i

j

1

1

a1

a1

2

2

a2

a2

3

3

a3

a3

4

4

a4

a4



Proof.
We will prove this by induction. It is clear that when n = 2,

det
(
1 a1

1 a2

)
= a2 − a1 =

∏
1≤j<i≤2

(ai − aj).

Assume that it is true for n − 1. Now let’s consider the case n. Denote

p(x) := det


1 a1 a2

1 · · · an−1
1

1 a2 a2
2 · · · an−1

2

...
...

...
...

...
1 an−1 a2

n−1 · · · an−1
n−1

1 x x2 · · · xn−1

 .



Proof. (continued)

Because p(a1) = · · · = p(an−1) = 0 (why?), p(x) has to take the following
form:

p(x) = c(x − a1)(x − a2) · · · (x − an−1).

To identify the constant c, notice that c is the coefficient for xn−1. By
cofactor expansion of the determinant along the last row,

c = (−1)n+n det


1 a1 a2

1 · · · an−1
1

1 a2 a2
2 · · · an−1

2

...
...

...
...

...
1 an−1 a2

n−1 · · · an−1
n−1


=

∏
1≤j<i≤n−1

(ai − aj).



Proof. (continued)
Hence,

p(an) =

 ∏
1≤j<i≤n−1

(ai − aj)

× (an − a1)(an − a2) · · · (an − an−1)

i

j

1 2 · · · n − 1 n

1

2

...

n − 1

n

an − a1

an − a2

...

an − an−1

p(an) =
∏

1≤j<i≤n

(ai − aj).
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Example
In our earlier example with the data points (0, 1), (1, 2), (2, 5) and (3, 10),
we have

a1 = 0, a2 = 1, a3 = 2, a4 = 3

giving us the Vandermonde determinant∣∣∣∣∣∣∣∣
1 0 0 0
1 1 1 1
1 2 4 8
1 3 9 27

∣∣∣∣∣∣∣∣
According to the previous theorem, this determinant is equal to

(a2 − a1)(a3 − a1)(a3 − a2)(a4 − a1)(a4 − a2)(a4 − a3)

=(1− 0)(2− 0)(2− 1)(3− 0)(3− 1)(3− 2)

=2× 3× 2

=12.



Corollary
The Vandermonde determinant is nonzero if a1, a2, . . . , an are distinct.

This means that given n data points (x1, y1), (x2, y2), . . . , (xn, yn) with
distinct xi, then there is a unique interpolating polynomial

p(x) = r0 + r1x + r2x2 + · · ·+ rn−1xn−1.
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